

Dynamic Aerospace Vehicle Exchange DTD Function Data Representation

Version: 1.8b1

This DTD module is identified by these PUBLIC and SYSTEM identifiers:

PUBLIC "-//NASA//DTD for Flight Dynamic Models - Functions 1.8//EN" SYSTEM "http://daveml.larc.nasa.gov/DTDs/1p8b1/DAVEfunc.dtd"

Developed by:

American Institute of Aeronautics and Astronautics (AIAA) Modeling & Simulation Technical Committee Simulation Modeling Standards Subcommittee

Contact information:

E. Bruce Jackson <mailto:e.b.jackson@nasa.gov>
Bruce L. Hildreth <mailto:bruce.hildreth@saic.com>
<http://daveml.nasa.gov>

Purpose:

Proposed standard for exchanging dynamic models of aerospace vehicles, including aero, engine, gear, inertia, and control models.

This preliminary version defines static models typically associated with aerodynamic subsystem models, but can be used to describe any non-linear multi-dimensional function.

Status:

In development. Direct comments to above contacts.

Acknowledgements:

Assistance and encouragement by Jon S. Berndt whose JSBsim aero & control law XML format was original work. Extensive testing, collaboration, and encouragement from both Bill Cleveland at NASA Ames and Brent York, formerly of NAVAIR, who were the real beta testers. Statistical encoding was made possible by contributions and suggestions from J. Dana McMinn of NASA Langley Research Center.

		>
<br </th <th>++++++++++++++++++++++++++++++++++++++</th> <th>> -> ></th>	++++++++++++++++++++++++++++++++++++++	> -> >
</td <td>Root element is DAVEfunc, composed of a file header element followed by 1 or more variable definitions and 0 or more break point definitions, gridded or ungridded table definitions, and function elements.</td> <td></td>	Root element is DAVEfunc, composed of a file header element followed by 1 or more variable definitions and 0 or more break point definitions, gridded or ungridded table definitions, and function elements.	
	EMENT DAVEfunc (fileHeader, variableDef+, breakpointDef*, griddedTableDef*, iddedTableDef*,	>
</td <td>++++++++++++++++++++++++++++++++++++++</td> <td>> -> ></td>	++++++++++++++++++++++++++++++++++++++	> -> >
</td <td>The header element requires at least one author, a creation date and a version indicator; optional content are description, references and mod records.</td> <td></td>	The header element requires at least one author, a creation date and a version indicator; optional content are description, references and mod records.	
		>

```
(author+, fileCreationDate, fileVersion?, description?, reference*,
modificationRecord*, provenance*)
<!ATTLIST fileHeader
     name
                CDATA
                        #IMPLIED
      variableDef elements provide wiring information - that is, they
      identify the input and output signals used by these function
      blocks. They also provide MathML content markup to indicate any
      calculation required to arrive at the value of the variable,
      using other variables as inputs. The variable definition can
      include statistical information regarding the uncertainty of the
      values which it might take on, when measured after any
      calculation is performed.
<!ELEMENT variableDef
     (description?, calculation?, isOutput?, isState?, isStateDeriv?,
isStdAIAA?, uncertainty?)
<!ATTLIST variableDef
                CDATA
                        #REQUIRED
     name
     varID
                ID
                        #REQUIRED
     units
                CDATA
                        #REQUIRED
     axisSystem CDATA
                        #IMPLIED
     sign
                CDATA
                        #IMPLIED
     alias
                CDATA
                        #IMPLIED
     symbol
                CDATA
                        #IMPLIED
     initialValue
                        CDATA
                               #IMPLIED
<!ELEMENT variableRef EMPTY>
<!ATTLIST variableRef
     varID
                IDREF
                        #REQUIRED
      A breakpointDef is where gridded table breakpoints are given.
      Since these are separate from function data, may be reused.
```

```
<!ELEMENT breakpointDef</pre>
    (description?, bpVals)
<!ATTLIST breakpointDef
    name
              CDATA
                     #IMPLIED
    bpID
              ID
                     #REQUIRED
    units
              CDATA #IMPLIED
>
     bpVals is a set of breakpoints; that is, a set of independent
     variable values associated with one dimension of a gridded table
     of data. An example would be the Mach or angle-of-attack values
     that define the coordinates of each data point in a
     two-dimensional coefficient value table.
     ---
<!ELEMENT bpVals (#PCDATA)>
A griddedTableDef contains points arranged in an orthogonal (but
     multi-dimensional) array, where the independent variables are
     defined by separate breakpoint vectors. This table definition
     is specified separately from the actual function declaration and
     requires an XML identifier attribute so that it may be used by
     multiple functions. The table data point values are specified
     as comma-separated values in floating-point notation
     (0.93638E-06) in a single long sequence as if the table had been
     unraveled with the last-specified dimension changing most
     rapidly. Line breaks are to be ignored. Comments may be
     embedded in the table to promote [human] readability.
<!ELEMENT griddedTableDef
    (description?,
    (provenance? | provenanceRef?)
, breakpointRefs, uncertainty?, dataTable)
```

<!ATTLIST griddedTableDef

name

CDATA

#IMPLIED

```
ID
     atID
                        #IMPLIED
     units
                CDATA
                      #IMPLIED
>
      An ungriddedTableDef contains points that are not in an
      orthogonal grid pattern; thus, the independent variable
      coordinates are specified for each dependent variable value.
      This table definition is specified separately from the actual
      function declaration and requires an XML identifier attribute so
      that it may be used by multiple functions.
<!ELEMENT ungriddedTableDef
     (description?,
     (provenance? | provenanceRef?)
, uncertainty?, dataPoint+)
<!ATTLIST ungriddedTableDef
                CDATA
     name
                        #IMPLIED
     utID
                ID
                        #IMPLIED
               CDATA #IMPLIED
     units
>
      Each function has optional description, optional provenance, and
      either a simple input/output values or references to more
      complete (possible multiple) input, output, and function data
      elements.
<!ELEMENT function
     (description?,
     (provenance? | provenanceRef?)
,
     (independentVarPts+, dependentVarPts)
     (independentVarRef+, dependentVarRef, functionDefn)
)
```

```
<!ATTLIST function
   name CDATA #REQUIRED
    This top-level element is the placeholder for verification data of
various forms. It will
    include static check cases, trim shots, and dynamic check case
information.
<!ELEMENT checkData
   (staticShot*)
<!--
                    Level 2 Elements
author includes alternate means of identifying author using
    XNS or normal e-mail/address. The address subelement is to be
replaced
    with the more complete contactInfo subelement.
<!ELEMENT author
   (address* | contactInfo*)
<!ATTLIST author
   name
           CDATA
                 #REQUIRED
           CDATA
                 #REQUIRED
   org
          CDATA
                #IMPLIED
   xns
   email
           CDATA
                 #IMPLIED
>
```

fileCreationDate is simply a string with a date in it. We follow ISO 8601 and use dates like "2004-01-02" to refer to

discretely updated state (for discrete models). <!ELEMENT isState EMPTY> Option isStateDeriv element identifies this variable as a state derivative variable in a dynamic model; this tells the implementation that this is the output of an integrator (for continous models only). <!ELEMENT isStateDeriv EMPTY> Optional isStdAIAA element identifies this variable is one of the [draft] standard AIAA variable names which should be recognizable exterior to this module, e.g. AngleOfAttack_deg. This flag should assist importing tools determine when an input or output should match a facility-provided signal name without requiring further information. <!ELEMENT isStdAIAA EMPTY> Optional calculation element is MathML 2 content markup describing how the signal is calculated. <!ELEMENT calculation (mathml2:math)>

CDATA #FIXED 'http://www.w3.org/TR/MathML2'

<!ATTLIST calculation
xmlns:mathml2</pre>

variable in a dynamic model; this tells the implementation that this is the output of an integrator (for continous models) or a

```
A reference element associates an external document with an ID
     making use of XLink semantics.
<!ELEMENT reference (description?)>
<!ATTLIST reference
    xmlns:xlink
                    CDATA
                           #FIXED 'http://www.w3.org/1999/xlink'
    xlink:type (simple)
                            #FIXED 'simple'
    refID
             ID
                    #REQUIRED
    author
             CDATA
                    #REQUIRED
    title
             CDATA #REQUIRED
    accession CDATA
                    #IMPLIED
                    #REQUIRED
             CDATA
    date
    xlink:href CDATA
                    #IMPLIED
A modificationRecord associates a single letter (such as
     modification "A") with modification author(s), address, and any
     optional external reference documents, in keeping with the AIAA
     draft standard.
<!ELEMENT modificationRecord</pre>
    (author+, description?, extraDocRef*)
<!ATTLIST modificationRecord
    modID
             ID
                    #REQUIRED
    refID
             IDREF #IMPLIED
A single modification event may have more than one documented
     reference. This element can be used in place of the refID
     attribute in a modificationRecord to record more than one
     refIDs, pointing to the referenced document.
```

>

```
<!ELEMENT extraDocRef EMPTY>
<!ATTLIST extraDocRef
    refID
              IDREF
                    #REQUIRED
     optional provenance describes history or source of data and
     includes author, date, and zero or more references to documents
     and modification records.
<!ELEMENT provenance
    (author+, functionCreationDate, documentRef*, modificationRef*)
<!ATTLIST provenance
    provID
              ID
                     #IMPLIED
When the provenance of a set of several data is identical, the
     first provenance element may be given a provID and referenced by
     later data elements as a space-saving measure.
<!ELEMENT provenanceRef EMPTY>
<!ATTLIST provenanceRef
    provID
              IDREF
                     #REQUIRED
```

An independentVarPts element is a simple list of breakpoints and contains a mandatory varID identifier as well as optional name, units, and sign convention attributes. An optional extrapolate attribute describes how to extrapolate the output value when the input value exceeds specified values. An optional interpolate attribute indicates how to perform the interpolation within the table (either linear or cubic spline). This element is used for simple functions that don't share breakpoint or table values with other functions.

-->

```
<!ELEMENT independentVarPts (#PCDATA)>
<!ATTLIST independentVarPts
                IDREF
                        #REOUIRED
    varID
                        #IMPLIED
    name
                CDATA
    units
                CDATA
                        #IMPLIED
    sign
                CDATA
                        #IMPLIED
                        (neither | min | max | both) #IMPLIED
    extrapolate
                        (linear | cublicSpline) #IMPLIED
    interpolate
```

A dependentVarPts element is a simple of function values and contains a mandatory varID as well as optional name, units, and sign convention attributes. Data points are arranged as single vector with last-specified breakpoint values changing most frequently. Note that the number of dependent values must equal the product of the number of independent values for this simple, gridded, realization. This element is used for simple functions that don't share breakpoint or table values with other functions.

-->

An independentVarRef more fully describes the input mapping of the function by pointing to a separate breakpoint definition element. An optional extrapolate attribute describes how to extrapolate the output value when the input value exceeds specified values. An optional interpolate attribute indicates how to perform the interpolation within the table (either linear or cubic spline). This allows common breakpoint values for many tables.

-->

```
<!ELEMENT independentVarRef EMPTY>
<!ATTLIST independentVarRef
    varID
             IDREF
                    #REQUIRED
             CDATA #IMPLIED
    min
             CDATA
                    #IMPLIED
    max
                    (neither | min | max | both) #IMPLIED
    extrapolate
                  (linear | cublicSpline) #IMPLIED
    interpolate
>
     A dependentVarRef ties the output of a function to a signal name
     defined previously in a variable definition.
<!ELEMENT dependentVarRef EMPTY>
<!ATTLIST dependentVarRef
             IDREF #REQUIRED
    varID
     A functionDefn defines how function is represented in one of two
     possible ways: gridded (implies breakpoints), or ungridded (with
     explicit independent values for each point).
<!ELEMENT functionDefn
    (griddedTableRef | griddedTableDef | griddedTable | ungriddedTableRef
l ungriddedTableDef | ungriddedTable)
<!ATTLIST functionDefn
    name CDATA #IMPLIED
<!--
                        Level 3 Elements
<!ELEMENT address (#PCDATA)>
```

```
Used to provide contact information about an author. Use
      contactInfoType to differentiate what information is being
      conveyed, and contactLocation to denote location of the address.
<!ELEMENT contactInfo (#PCDATA)>
<!ATTLIST contactInfo
                        (address | phone | fax | email | iname | web)
     contactInfoType
#IMPLIED
     contactLocation
                        (professional | personal | mobile) #IMPLIED
<!ELEMENT functionCreationDate EMPTY>
<!ATTLIST functionCreationDate
     date
                CDATA
                        #REQUIRED
<!ELEMENT documentRef EMPTY>
<!ATTLIST documentRef
     docID
                IDREF
                        #IMPLIED
     refID
                IDREF
                        #REQUIRED
>
<!ELEMENT modificationRef EMPTY>
<!ATTLIST modificationRef
     modID
                IDREF
                        #REQUIRED
<!ELEMENT griddedTableRef EMPTY>
<!ATTLIST griddedTableRef
     atID
                IDREF
                        #REQUIRED
>
<!ELEMENT griddedTable
     (breakpointRefs, confidenceBound?, dataTable)
<!ATTLIST griddedTable
     name
                CDATA
                        #IMPLIED
<!ELEMENT ungriddedTableRef EMPTY>
<!ATTLIST unariddedTableRef
     utID
                IDREF
                        #REQUIRED
```

```
<!ELEMENT ungriddedTable
   (confidenceBound?, dataPoint+)
<!ATTLIST ungriddedTable
   name
            CDATA
                  #IMPLIED
    Contains a description of the inputs and outputs, and possibly
internal values, of a DAVE-ML
    model in a particular instant of time.
<!ELEMENT staticShot
   (checkInputs, internalValues?, checkOutputs)
<!ATTLIST staticShot
                 #REQUIRED
   name
            CDATA
   refID
         IDREF
                  #IMPLIED
Level 4 Elements
The breakpointRefs elements tie the independent variable names
    for the function to specific breakpoint values defined earlier.
<!ELEMENT breakpointRefs (bpRef+)>
    The confidenceBound element is used to declare the confidence
```

The confidenceBound element is used to declare the confidence interval associated with the data table. This is a placeholder and will be removed in a future version of DAVE-ML.

The dataPoint element is used by ungridded tables to list the values of independent variables that are associated with each

value of dependent variable. For example: <dataPoint> 0.1, -4.0, 0.2 <!- Mach, alpha, CL -> </dataPoint> <dataPoint> 0.1, 0.0, 0.6 <!- Mach, alpha CL -> </dataPoint> Each data point may have associated with it a modification tag to document the genesis of that particular point. No requirement on ordering of independent variables is implied. Since this is a ungridded table, the intepreting application is required to handle what may be unsorted data. <!ELEMENT dataPoint (#PCDATA)> <!ATTLIST dataPoint IDREF #IMPLIED modID Specifies the contents of the input vector for the given check case. <!ELEMENT checkInputs (signal+)> Provides a set of all internal variable values to assist in debugging recalcitrant implementations of DAVE-ML import tools. _____ ---<!ELEMENT internalValues (signal+)>

<!ELEMENT checkOutputs (signal+)>

```
<!--
                     Level 5 Elements
The bpRef element provides references to breakpoint lists so
    breakpoints can be defined separately from, and reused by,
    several data tables.
<!ELEMENT bpRef EMPTY>
<!ATTLIST bpRef
   bpID IDREF #REQUIRED
In a normally distributed random variable, a symmetrical
    distribution of given standard deviation is assumed about the
    nominal value (which is given elsewhere in the parent element).
    The correlatesWith subelement references other functions or
    variables that have a linear correlation to the current
    parameter or function. The correlation subelement specifies the
    correlation coefficient and references the other function or
    variable whose random value helps determine the value of this
    parameter.
<!ELEMENT normalPDF
   (bounds, correlatesWith*, correlation*)
<!ATTLIST normalPDF
   numSigmas CDATA #REQUIRED
```

In a uniformly distributed random variable, the value of the parameter has equal likelihood of assuming any value within the (possibly asymmetric) bounds, which must bracket the nominal

value (which is given elsewhere in the parent element).

-->

This element contains some description of the statistical limits to the values the citing parameter element might take on. This can be in the form of a scalar value, a[n] [un]griddedTableRef reference to an existing table definition, or a private [un]griddedTableDef, or a private table. In the case of formal table references or definitions, these tables define their own dependency, independent of the underlying random variable (whose nominal value is probably specified in a parent table definition). In the more common instance, this element will either be a scalar constant value or a simple table, whose dimensions must match the parent nominal function table and whose independent variables are identical to the nominal table. It is also possible that this limit be determined by an independent variable.

```
<!ELEMENT bounds
```

(#PCDATA | dataTable | variableDef | variableRef)*

When present, this element indicates the parent function or variable is correlated with the referenced other function or variable in a linear sense. This alerts the application that the random number used to calculate this function or variable's immediate value will be used to calculate another function of variable's value.

-->

<!ELEMENT correlatesWith EMPTY>
<!ATTLIST correlatesWith</pre>

```
varID
              IDREF
                     #REQUIRED
>
     When present, this element indicates the parent function or
     variable is correlated with the referenced other function or
     variable in a linear sense, and gives the correlation
     coefficient for determining this function's random value based
     upon the correlating function(s) random value.
<!ELEMENT correlation EMPTY>
<!ATTLIST correlation
    varTD
              IDREF
                     #REQUIRED
    corrCoef
              CDATA
                      #REQUIRED
                          _____
     This element is used to document the name, ID, value, tolerance, and
units of measure for
     checkcases. When used with checkInputs or checkOutputs, the
signalName subelement must be
     present (since check cases are viewed from "outside" the model); when
used in an
     internalValues element, the signalID subelement should be used to
identify the signal by ID
     (which is the model-unique internal reference for each signal). When
used in a checkOutputs
     vector, the tol element must be present.
    -->
<!ELEMENT signal
    (
    (signalName, signalUnits?)
 Ι
    (signalID)
```

, signalValue, tol?)

</th <th>++++++++++++++++++++++++++++++++++++++</th>	++++++++++++++++++++++++++++++++++++++
</td <td>+++++++++++++++++++++++++++++++++++++++</td>	+++++++++++++++++++++++++++++++++++++++
</td <td></td>	
vario	Used inside a checkCase element to specify the input or output able name
	EMENT signalName (#PCDATA)>
</td <td>Used inside a checkCase element to specify the input or output varID</td>	Used inside a checkCase element to specify the input or output varID
ELE</td <td>EMENT signalID (#PCDATA)></td>	EMENT signalID (#PCDATA)>
	Used inside a checkCase element to specify the units-of-measure for aput or output variable, for verification of proper implementation of a model.
ELE</td <td>EMENT signalUnits (#PCDATA)></td>	EMENT signalUnits (#PCDATA)>
</td <td></td>	
inter model	Used inside a checkCase element to give the current value of an rnal signal or input/output variable, for verification of proper implementation of a
ELE</td <td>EMENT signalValue (#PCDATA)></td>	EMENT signalValue (#PCDATA)>

. 1						
<i>~</i> '	 ======	 	 	 	 	

This element specifies the allowable tolerance of error in an output value such that the model

can be considered verified. It is assumed all uncertainty is removed in performing the model $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$

calculations.

<!ELEMENT tol (#PCDATA)>